
A New Term Rewriting Characterisation of
ETIME functions

Martin Avanzini and Naohi Eguchi?

Institute of Computer Science, University of Innsbruck, Austria
{martin.avanzini,naohi.eguchi}@uibk.ac.at

Abstract. Adopting former term rewriting characterisations of poly-
time and exponential-time computable functions, we introduce a new
reduction order, the Path Order for ETIME (POE∗ for short), that is
sound and complete for ETIME computable functions. The proposed re-
duction order for ETIME makes contrasts to those related complexity
classes clear.

1 Introduction

Function-algebraic approaches to computational complexity classes without ex-
plicit bounding constraints have been developed, providing successful character-
isations of various complexity classes of functions as the smallest classes contain-
ing certain initial functions closed under specific operations. Initially, S. Bellan-
toni and S. Cook introduced a restrictive form of primitive recursion known as
safe recursion [7], or independently D. Leivant introduced tiered recursion [10],
characterising the class of polynomial-time computable functions. The idea of
safe recursion is to separate the arguments of every function into two kinds (by
semicolon) so that the number of recursive calls is measured only by an argu-
ment occurring left to semicolon whereas recursion terms are substituted only
for arguments occurring right:

f(ε, ~y ;~z) = g(~y ;~z)
f(x · i, ~y ;~z) = h(x, ~y ;~z, f(x, ~y ;~z)) (i = 0, 1)

(Safe Recursion)

In contrast to classical approaches based on bounded recursion, the function-
algebraic characterisation by safe recursion enables us to define every polytime
function by a purely equational system, or in other word by a term rewrite
system. Improving the function-algebraic characterisation by S. Bellantoni and
S. Cook, together with G. Moser the authors introduced the (small) polynomial
path order (sPOP∗) [3] that constitutes an order-theoretic characterisation of the
polytime functions. In the present work, we introduce a syntactic extension of
sPOP∗, the Path Order for ETIME (POE∗ for short). This order characterises
the class FETIME of ETIME computable functions, i.e., functions computable
in deterministic time 2O(n).
? The first author is supported by the FWF (Austrian Science Fund) project I-608-

N18. The second author is supported by JSPS posdoctoral fellowships for young
scientists.

2 Function-algebraic Backgrounds

Various function-algebraic characterisations of the ETIME functions are known,
e.g. [11,8]. It is also known that extension of safe recursion to (multiple) nested
recursion, called safe nested recursion, captures the class of exponential-time
computable functions [1]. Improving the function-algebraic characterisation by
safe nested recursion, the authors together with G. Moser have introduced an
order, the Exponential Path Order (EPO∗), that is sound and complete for the
exponential-time functions. The order proposed here is a syntactic restriction of
EPO∗.

It turns out that the following form of safe nested recursion with single re-
cursion arguments is sound for ETIME functions.

f(ε, ~y ;~z) = g(~y ;~z)

f(x · i, ~y ;~z) = h(x, ~y ; f(x, ~y ; ~h′(x, ~y ;~z, f(x, ~y ;~z)))) (i = 0, 1)

The definition of POE∗ essentially encodes this recursion scheme. In contrast to
related work, this scheme does neither rely on bounded functions [11] and allows
the definition of functions that grow faster than a linear polynomial [8].

3 The Path Order for ETIME (POE∗)

We assume at least nodding acquaintance with the basics of term rewriting [6].
For an order >, we denote by >prod the product extension of > defined by
〈a1, . . . , ak〉 >prod 〈b1, . . . , bk〉 if ai = bi or ai > bi for all i = 1, . . . , k, and
there exists at least one j ∈ {1, . . . , k} such that aj > bj holds.

We fix a countably infinite set of variables V and a finite set of function
symbols F , the signature. The set of terms formed from F and V is denoted
by T (F ,V). The signature F contains a distinguished set of constructors C,
elements of T (C) are called values. Elements of F that are not constructors are
called defined symbols and collected in D. We use always v to denote values, and
arbitrary terms are denoted by l, r and s, t, . . . , possibly followed by subscripts.
A substitution σ is a finite mapping from variables to terms, its homomorphic
extension to terms is also denoted by σ and we write tσ instead of σ(t).

A term rewrite system (TRS for short) R (over F) is a finite set of rewrite
rules f(l1, . . . , ln) → r, where all variable in the term r occur in the term
f(l1, . . . , ln) and f ∈ D. Adopting call-by-value semantics, we define the rewrite
relation −→R by

(i)
f(l1, . . . , ln)→ r ∈ R, σ : V → T (C)

f(l1σ, . . . , lnσ) −→R rσ
(ii)

s −→R t

f(. . . , s, . . .) −→R f(. . . , t, . . .)
.

Throughout the present notes we only consider completely defined,1 orthog-
onal constructor TRSs [6], that is, for each application of (i) there is exactly

1 The restriction is not necessary, but simplifies our presentation.

2

one matching rule f(l1, . . . , ln)→ r ∈ R; the terms li (i = 1, . . . , n) contains no
defined symbols and variables occur only once in f(l1, . . . , ln).

For each defined symbol f of arity k, R defines a function JfK : T (C)k →
T (C) by JfK(v1, . . . , vk) := v iff f(v1, . . . , vk) −→R · · · −→R v. These functions are
well-defined if R terminating, i.e., when −→R is well-founded.

For a term t, the size of t is denoted as |t| referring to the number of symbols
occurring in t. For a complexity measure for TRSs, the (innermost) runtime
complexity function rcR : N→ N is defined by

rcR(n) := max{` | ∃s = f(v1, . . . , vn), |s| 6 n and s = t0 −→R t1 −→R . . . −→R t`} ,

which is well-defined for terminating TRSs R. The runtime-complexity function
constitutes an invariant cost-model for rewrite systems: the functions JfK (f ∈
D) can be computed within polynomial overhead on conventional models of
computation, e.g., on Turing machines [9,5].

Let > denote a strict order on F , the precedence. We assume that the argu-
ment positions of every function symbol are separated into two kinds. The sep-
aration is denoted by semicolon as f(t1, . . . , tk ; tk+1, . . . , tk+l), where t1, . . . , tk
are called normal arguments whereas tk+1, . . . , tk+l are called safe ones. For con-
structors C, we suppose that all symbols are safe. We write s �n t if t is a sub-term
of a normal argument of s, i.e., s = f(s1, . . . , sk ; sk+1, . . . , sk+l) and t occurs in
a term si for i ∈ {1, . . . , k}. The following definition introduces the order POE∗.

Definition 1. Let > be a precedence and let s = f(s1, . . . , sk ; sk+1, . . . , sk+l).
Then s >poe∗ t if one of the following alternatives holds.

1. si >poe∗ t for some i ∈ {1, . . . , k + l}.
2. f ∈ D and t = g(t1, . . . , tm ; tm+1, . . . , tm+n) with f > g and:

– s �n tj for all j ∈ {1, . . . ,m};
– s >poe∗ tj for all j ∈ {m+ 1, . . . ,m+ n};

3. f ∈ D and t = f(t1, . . . , tk ; tk+1, . . . , tk+l) and:
– 〈s1, . . . , sk〉 >prod

poe∗ 〈t1, . . . , tk〉
– s >poe∗ tj for all j ∈ {k + 1, . . . , k + l}.

We call a TRS R POE∗-compatible if R ⊆ >poe∗ holds for some >poe∗ .

Example 1. The standard addition (x, y) 7→ x+ y (in unary notation) is defined
by a TRS Radd consisting of the following two rules.

1 : add(0 ; y)→ y 2 : add(s(;x) ; y)→ s(; add(x ; y))

Define a precedence by add > s and an argument separation as indicated in
the rules. Then it can be seen that add(0 ; y) >poe∗ y and add(s(;x) ; y) >poe∗

s(; add(x ; y)) hold for the order >poe∗ induced by the precedence >.

Example 2. Consider the TRS Rexp consisting of the following two rules.

1 : exp(0 ; y)→ s(; y) 2 : exp(s(;x) ; y)→ exp(x ; exp(x ; y))

The TRS Rexp computes the exponential 2x + y (in unary notation) and is
compatible with the order >poe∗ using the precedence exp > s.

3

Example 3. A factorial function of the form y · x! + z is defined by a TRS Rfac

consisting of Radd and additionally of the following three rules.

3 : fac(0, y ; z)→ add(y ; z) 4 : fac(s(;x), 0 ; z)→ z

5 : fac(s(;x), s(; y) ; z)→ fac(s(;x), y ; fac(x, s(;x) ; z))

The TRS Rfac is not compatible with any POE∗. Here, rule 5 is not orientable
since the element-wise comparison of 〈s(;x), s(; y)〉 and 〈x, s(;x)〉 fails.

By the following Theorem, it is not surprising that Rfac is not POE∗-compatible.

Theorem 1 (Soundness of POE∗for FETIME). Every function defined by
a POE∗-compatible rewrite system is in FETIME.

This theorem follows from the following key lemma whose proof is involved
and hence kindly referred to a technical report [4].

Lemma 1. For any POE∗-compatible rewrite system R, rcR(n) ∈ 2O(n) holds.

Hence, our technique has also applications in the runtime-complexity analy-
sis of TRSs. We emphasise that a compatible order >poe∗ can be computed in
non-deterministic polynomial time in the size of the input TRS R (i.e, number
of symbols in R), simply by guessing a suitable precedence and separation of
argument positions and checking the constraints imposed by Definition 1. We
conjecture, that a compatible >poe∗ can even be computed in polynomial time.

Although the inverse of Lemma 1 is in general not true, the order is also
extensionally complete for FETIME.

Theorem 2 (Completeness of POE∗ for FETIME). Every ETIME func-
tion can be defined by a POE∗-compatible rewrite system.

Proof (Sketch). Consider words formed from dyadic successors 0 and 1 together
with a constant ε, denoting the empty word. The following rewrite rules

f1(ε ;u)→ step(;u) f1(i(;x) ;u)→ f1(x ; f0(x ;u)) (for i ∈ {0, 1}) ,

define a function JfK1(w ; c) = JstepK2
|w|

(; c), i.e., 2|w|-fold iteration of JstepK.
Here, we suppose that |w| counts the number of occurrences of 0 and 1 in w.
Next consider the following rewrite rules.

f2(ε, y ;u)→ f1(y ;u) f2(i(;x), y ;u)→ f2(x, y ; f2(x, y ;u)) (for i ∈ {0, 1}) .

Then Jf2K(w,w ;u) = JstepK2
2·|w|

(;u). This construction can be extended to k

functions such that JfkK(w, . . . , w ;u) = JstepK2
k·|w|

(;u). Note that all rules can
be oriented by >poe∗ , given by the precedence fk > · · · > f1 > step.

Using this construction, it is possible to simulate ETIME Turing machines
running in time 2O(n) by a POE∗-compatible TRS, essentially by substituting the
transition function for step. Note that step can be defined by pattern matching
only, in particular it is easy to define step such that the underlying rewrite rules
are POE∗-compatible.

Corollary 1. The class FETIME coincides with the class of functions computed
by POE∗-compatible rewrite systems.

4

4 Conclusion

Adopting former works [2,3], we introduced a reduction order, the Path Order
for ETIME (POE∗), that is sound and complete for FETIME. The path order
POE∗ is a strictly intermediate order between the (small) path order for polytime
(sPOP∗) and exponential path order (EPO∗).

These orders differ only in constraints imposed on recursive definitions: POE∗

extends sPOP∗ by allowing nested recursive calls, as in the TRS Rexp; the order
EPO∗ permits additionally recursion along lexicographic descending arguments,
as in rule 5 of the TRS Rfac. Consequently, from our three examples only the
TRS Radd is compatible with sPOP∗, whereas Radd and Rexp is compatible with
POE∗ and EPO∗ can even handle Rfac.

This contrast clarifies the relationship FP ⊆ FETIME ⊆ FEXP for the class
FP of polytime and the class FEXP of exponential time computable functions.

References

1. T. Arai and N. Eguchi. A New Function Algebra of EXPTIME Functions by Safe
Nested Recursion. ACM TCL, 10(4), 2009. Article No. 24, 19 pages.

2. M. Avanzini, N. Eguchi, and G. Moser. A Path Order for Rewrite Systems that
Compute Exponential Time Functions. In Proc. of the 22nd RTA, volume 10 of
LIPIcs, pages 123–138, 2011.

3. M. Avanzini, N. Eguchi, and G. Moser. A New Order-theoretic Characterisation
of the Polytime Computable Functions. In Proc. of the 10th APLAS, volume 7705
of LNCS, pages 280–295, 2012.

4. M. Avanzini and N. Eguchi. A New Term-rewriting Characterisation of ETIME
Functions. Technical report. NE will make this report available at arXiv before
submission.

5. M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity and
Polytime Computability. In Proc. of the 21st RTA , volume 6 of LIPIcs, pages
33–48, 2010.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambredge University
Press, 1998.

7. S. Bellantoni and S. A. Cook. A New Recursion-theoretic Characterization of the
Polytime Functions. Computational Complexity, 2(2):97–110, 1992.

8. P. Clote. A Safe Recursion Scheme for Exponential Time. In Proc. of the 4th
LFCS, volume 1234 of LNCS, pages 44–52, 1997.

9. U. Dal Lago and S. Martini. On Constructor Rewrite Systems and the Lambda-
Calculus. In Proc. of the 36th ICALP, volume 5556 of LNCS, pages 163–174,
2009.

10. D. Leivant. Ramified Recurrence and Computational Complexity I: Word Recur-
rence and Poly-time. In Feasible Mathematics II, Progress in Computer Science
and Applied Logic, volume 13, pages 320–343. Birkhäuser Boston, 1995.

11. B. Monien. A Recursive and Grammatical Characterization of Exponential Time
Languages. Theoretical Computer Science, 3:61–74, 1977.

5

