
1

A context semantics for interaction nets
Matthieu Perrinel ENS Lyon

Université de Lyon
LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA

matthieu.perrinel@ens-lyon.fr

Abstract—Context semantics is a tool inspired by Girard’ s
geometry of interaction. It has had many applications from study
of optimal reduction to proofs of complexity bounds. Yet, context
semantics have been defined only on λ-calculus and linear logic.

In order to study other languages, in particular languages with
more primitives (built-in arithmetics, pattern matching,...) we
define a context semantics for a broader framework: interaction
nets. These are a well-behaved class of graph rewriting systems.
It could be used to prove strong complexity bounds for functional
languages.

I. INTRODUCTION

Context semantics (CS) is a tool related to geometry of
interaction (GoI) [4], [8]. CS is a mean to study the evaluation
of a program (a λ-term or a proof-net of linear logic) by means
of paths in the program. Those paths are defined by a token
travelling across the program according to some rules. It has
first been used to study optimal reductions in λ-calculus [8]
and linear logic [9]. Then, it has been used to prove complexity
bounds on subsystems of System T [11] and linear logic [1],
[3], [15]. An advantage of context semantics compared to the
syntactic study of reduction is its genericity: some common
results can be proved for different variants of linear logic,
which allows to factor out proofs of complexity results for
these various systems.

Since CS had many interesting developments in λ-calculus
and linear logic, we would like to have a similar tool for pro-
gramming languages. For instance, we want pattern-matching,
inductive data-types (as opposed to Church encoding) and
built-in arithmetics operation. As the set of features needed is
not precisely defined, a general framework of systems would
be preferred to a single system. This way, we would need
to define the CS and prove the general theorems only once,
and they will stand for any system of the framework. The
framework we chose is interaction nets [10].

Interaction nets are a model of asynchronous deterministic
computation. They are based on rewriting rules on graphs and
were inspired by the proof-nets of linear logic [7]. Interac-
tion nets can, in particular, encode proof-nets [13] and λ-
calculus [12]. Moreover, interaction nets are general enough to
encode functional programming languages containing pattern-
matching and built-in recursion [6]. A non-deterministic ex-
tension is powerful enough to encode the full π-calculus [14].

A net is a graph-like structure whose nodes are called cells.
Each cell is labelled by a symbol. A library defines the set
of symbols and the rewriting rules for the symbols. Thus, a
library corresponds to a programming language. Interaction
nets as a whole, correspond to a set of programming languages.

Contributions: In this paper, we define CS for any library
and we show that the CS paths are stable along reduction. For
any net N , we define a weight WN ∈ N ∪ {∞} based on CS
paths. We prove that if M reduces to N , then WN = WM−1.
Thus, if N normalizes, WN is the length of the reduction
path, else WN =∞. This could be used to prove complexity
bounds on programming languages which are either defined
or encodable in interaction nets.

Related works: As CS is a model of GoI, the closest work
to this paper, is the definition of a GoI for an arbitrary library
by De Falco [5]. De Falco defines a notion of paths in nets and
a notion of reduction of those paths. Then, he defines a GoI of
a library as a weighing of paths by elements of a semi-group
such that the weights are stable along reduction. However, one
crucial lemma only stands for crossing libraries. Moreover, he
exhibits such a semi-group only for some particular libraries
(based on linear logic). Thus, there is no complete GoI model
of interaction nets yet.

II. INTERACTION NETS

A. Statics

Interaction nets have been defined in many ways. Here, to
define properly the CS paths, we had to use a formal definition.

We fix a symbol set S = (S, α) with S a countable set
whose elements will be called symbols and α a mapping from
S to N associating an arity to each symbol.

A net is a set of cells joined by wires. Wires may have one
(or both) ends unattached. We will often connect nets, those
connections are made by those unattached ends. Formally, the
ends of wires will be represented by a set PN of ports. There
are three types of ports: ports attached to a cell (the set PNc),
free ports (the set PNf) and merging ports (the set PNm). This
latest group is used for technical reasons.

Definition 1. A net N is a tuple (PN , CN , lN , σNw , σ
N
m , σ

N
c)

with:
• PN = PNc] PNf] PNm is a finite set called set of ports.
• CN is a finite set whose elements will be called cells
• lN : CN 7→ S labels each cell with a symbol.
• σNw is an involution on PN with no fixpoint. We also

write p for σNw (p). σNw represents the wires: if there is a
wire between the ports p and p′, then p = p′ and p′ = p.

• σNm is an involution on PNm with no fixpoint. This mapping
associates two merging ports.

• σNc is a bijection from PNc to {(c, i)|c ∈ CN , 0 ≤
i ≤ α(lN (c))}. σNc represents the cells. For instance,

2

ζ
b0

b1

b2
ε

e0

δ
a0

a1

a2 m1|m2
δ c0

c1

c2
f1

f2

Fig. 1: Net N . Names of ports and labels of cells are
represented while names of cells are not.

σNc (p) = (c, 2) if p is the second auxiliary port of c and
σNc (p) = (c, 0) if p is the principal port of c.

For example, let Scomb = {ζ, δ, ε} be symbols
with α(ζ) = α(δ) = 2 and α(ε) = 0.
Then, Figure 1 represents the net N with:
PN = {a0, a1, a2, b0, b1, b2, c0, c1, c2, e0, f1, f2,m1,m2},
CN = {A,B,C,E}, lN = {A 7→ δ,B 7→ ζ, C 7→ δ, E 7→ ε},
σNw = {a1 ↔ a2, a0 ↔ b0, b2 ↔ e0, b1 ↔ m1,m2 ↔
c2, c1 ↔ c0, f1 ↔ f2}, σMm = {m1 ↔ m2} and
σNc = {a0 7→ (A, 0), a1 7→ (A, 1), a2 7→ (A, 2), b0 7→
(B, 0), b1 7→ (B, 1), b2 7→ (B, 2), c0 7→ (C, 0), c1 7→
(C, 1), c2 7→ (C, 2), e0 7→ (E, 0)}.

The merging ports are introduced for technical reasons but
are not essential. Let p, q be merging ports of a net N such
that p 6= q. Let N ′ be the net equal to N where p|qp q

is replaced by p q , then we write N →m N ′. We
define the equivalence relation �m as the reflexive symmetric
transitive closure of →m. The nets will be considered up to
�m equivalence and α-equivalence (renaming of the ports and
cells). Notice that →m is confluent and strongly normalizing,
we will usually represent a net by its →m normal form (the

only merging ports are the cycles of shape p|q).
Let c be a cell of N . We write pi(c) the port p such that

σNc (p) = (c, i). The principal port of c denotes p0(c). If i ≥ 1,
pi(c) is called the i-th auxiliary port of c.

B. Dynamics

The interaction between two nets is done by merging
some of their free ports. This operation is called gluing
and will be the main tool to define the dynamics of nets.
Let M and N be nets and φ be a partial injection from
PMf to PNf , then M1φN is the net whose ports and cells
are those of M and N , the free ports in the domain and
codomain of φ become merging nodes with σ

M1φN
m (p) =

φ(p) and σ
M1φN
m (φ(p)) = p. As an example, if we set

M = ζ
ε

δ m1

, N = m2 δ f1 f2 and φ =

{m1 7→ m2}, then M1φN is the net of Figure 1.
The computation in interaction nets is done by reduction of

active pairs. An active pair is a set of two cells linked by their
principal ports. Libraries will define which pairs of symbols
can interact. When an active pair is labelled by symbols which
can interact together, we may reduce it: those cells are replaced
by a net Ns,t which only depends on the symbols of the active
pair. The rest of the interaction net is left untouched.

Definition 2. Let s, t ∈ S, Rs,t is the net of Figure 2a.

i1
iα(s) o1

oα(t)
s t

(a) The net Rs,t

O1

Oα(t)

ψ(iα(s))

ψ(i1)
R

I1

Iα(s1)

(b) The reduct Ns,t of s/t

Fig. 2: Interaction rule with explicit bijection (Ok = ψ(ok)).

N1 =

ζ

ζ

δ

δ

ε
e0d2

a1|a′1

a2|a′2 m1|m2
δ c0

c1

c2

_|b2

f1

f2

N2 =

N3 =

N4 =

ζ

ζ δ

ε

ε

i1

i2

h1
h′1

h2
h′2

a1

a2 δ f1

f2

δ

j1

j2ε

ε
i1

i2
δ

f1

f2

δ

j1

j2
δ

f1

f2

Fig. 4: Example of reduction with the library Lcomb.

An interaction rule for (s, t) is a tuple (R,ψ) where R is a
net and ψ is a bijection from P

Rs,t
f to PRf . For 1 ≤ j ≤ α(s),

we name Ij the port ψ(ij) of R. For 1 ≤ j ≤ α(t), we name
Oj the port ψ(oj) of R, as in Figure 2b.

In practice, we will describe interaction rules by displaying
an active pair and the reduct linked by an arrrow as in Figure 3.
The bijection is given implicitly by the position of the ports.

Definition 3 (library). A library for the symbol set (S, α) is a
partial mapping L on S×S. To each (s1, s2) in the domain of
L, L associates an interaction rule for (s1, s2). Let us suppose
that L(s1, s2) = (R,ψ). Then we require that L(s2, s1) is
defined and equal to the symmetric of L(s1, s2) where inputs
and outputs are switched, i.e. L(s2, s1) = (R,ψ◦{ik ↔ ok}).
The reduction → is defined by N1φRs1,s2 → (N1ψ◦φR).

Because of the symmetry condition, the rules shown in
Figure 3 are enough to describe the whole library Lcomb
of symmetric combinators. The net of Figure 1 successively
reduces to the nets of Figure 4 (note that we use the notation _
to denote an object whose name and value has no importance).

As another example, let us consider an ordered set (A,≤),
and the symbols {S, []} ∪ A ∪ {Ia|a ∈ A} ∪ {a|a ∈ A}. The
arities and the library Lsort are defined by Figure 5. Then,

a1[] an S b1[] bn

3

δ ζ

ζ

ζ

δ

δ

d2
d12

d22

d1

d11

d21

z1
z11

z21

z2
z12

z22

ζ ζ

δ δ

ε ζ

ε

ε

r2
r1e1

e2

ε δ

ε ε

Fig. 3: The symmetric combinators, library Lcomb for Scomb

Ia b

m IM

Ia []

a []

S a

Ia S

S []

[]

a a

Fig. 5: Lsort library. The rules stand for any a, b ∈ A, m =
min(a, b) and M = max(a, b)

with [b1; · · · ; bn] the sorted list corresponding to [a1; · · · ; an].
More precisely, it is an implementation of insertion sort.

III. CONTEXT SEMANTICS

In this section, we fix a library L. For any (s1, s2) in
the domain of L, we write (Ns1,s2 , φs1,s2) = L(s1, s2).
This section uses many lists. Lists are written in the form
[a1; · · · ; an], l1@l2 represents the concatenation of l1 and l2,
. represents “push” ([a1; · · · ; an].b = [a1; · · · ; an; b]) and |l|
is the length of l.

Let us consider, in the net N3 of Figure 4, the wire from i1
to i2. The wire appears in N3 because the interaction of the
two ζ cells in N2 creates a wire between the second auxiliary
ports of the cells. So, intuitively, the path P3 = i1, i2 in N3

comes from P2 = i1, h1, a1, a2, h2, i2 in N2. The path P1 in
N1 corresponding to P2 seems harder to define because the
extremities i1 and i2 are not in N1, they correspond to the
ports e1 and e2 of Nδ,ε. We could represent the port i1 in N1

by the stack [(e0, N); (e2, Nδ,ε)], remembering what kind of
port is created (e2) and by which interaction it is created (e0).

It is exactly the idea of our context semantics. The ports
which will appear along the reduction are characterized by
stacks called potential ports (e.g. [(e0, N); (e2, Nδ,ε)]). The
reduction is simulated by paths, which are defined by contexts
travelling across the net according to a relation 7→. The
contexts are pairs of a potential port P and a trace T . The trace
Ti represents information about the beginning of the path.

The set PotN of potential ports of net N is the set of lists
[(p0, N); (p1, Ns1,t1); · · · ; (pk, Nsk,tk)] such that for each i:
pi is a port of Nsi,ti and pi−1 is the principal port of a cell
labelled by ti. For P ∈ PotN , we set P.(p,N ′) = P.(p,N ′).

A positive trace element is (s, i) with s ∈ S and 1 ≤ i ≤
α(s). The meaning of (s, i) is “I have crossed a cell of symbol
s, from its i-th auxiliary port to the principal port”. A positive
trace is a list of positive trace elements.

A negative trace element is (s, i) with s ∈ S and 1 ≤ i ≤
α(s). The meaning of (s, i) is “I will arrive at the principal
port of a cell of symbol s. When this happens I will choose
to leave it by its i-th auxiliary port”. A trace element is either
a positive trace element or a negative trace element. A trace
is a list of trace elements. The set of traces is written Tra.

We define the set of contexts of N1 by ContN1 =
PotN1 × Tra. The intuitive meaning of a context
([(p1, N1); · · · ; (pk, Nk)], [(t1, i1); · · · ; (tl, il)]) is: “N1 re-
duces to a net of the shape of Figure 7 where for 1 ≤ j ≤ l,
qj is the ij-th auxiliary port of the cell labelled by tj”.

Thus, a potential port is a nesting of interaction nets: in the
net N1 there is a cell which will be part of an active pair and
will produce the interaction net N2 when reducing. Inside this
N2, there is a cell which will be part of an active pair and
will produce N3 when reducing, and so on.

Definition 4. For any net N , we define a relation 7→ on
ContN by the rules of Figure 6. In those rules, we suppose
s, s′ ∈ S , c, c′ ∈ CN , lN (c) = s, lN (c′) = s′, 1 ≤ k ≤ α(s),
1 ≤ k′ ≤ α(s′) and m,m′ ∈ PNm with σNm(m) = m′.

This relation simulates reduction, in the sense that if
([(p,N)], []) 7→∗ (P, T) and Figure 7 is the net intuitively
representing (P, T), then q1 = p. The 7→ relation is determin-
istic and incomplete (there are contexts C such that C 67→, i.e.
∀D ∈ ContN ,¬(C 7→ D)). Let C = (P, T) ∈ ContN , the
possible context D such that C 7→ D is defined depending on
the right-most port p of P .

If p is an auxiliary port, we cross the cell and add the
information on the trace (rule a).

If p is a principal port, the behaviour depends on whether the
right-most trace element t is positive or negative (if the trace
is empty, C 67→L): if t is positive (rule c), then t = (s, k) it
corresponds to an active pair {c, c′} of symbols {s, s′}. During
reduction Ns,s′ will be glued to N , here we jump to Ns,s′ to
simulate reduction. Else if t is negative (rule b), then t =
(s, k). It means that at some moment in the path we crossed
the cell c from its auxiliary port to its principal port. Then,
we found a cell c′ such that {c, c′} will be an active pair. The
7→-path led us to a Ik free port. This port will correspond to
the k-th auxiliary port of c during reduction, so we pushed
(s, k) on the trace and took the path backward from c′ to c so
that we can reach the k-th auxiliary port of c.

If p is free, we are in the net Ns,s′ corresponding to the
interaction of the future active pair {c, c′}. The behaviour

4

a) (P.(pk(c), N) ,T) 7→ (P.(p0(c), N) ,T.(s, k))

b) (P.(p0(c), N) ,T.(s, k)) 7→ (P.(pk(c), N) ,T)

c) (P.(p0(c′), N) ,T.(s, k)) 7→ (P.(p0(c′), N).(Ik, Ns,s′) ,T)

d) (P.(p0(c′), N).(Ok′ , Ns,s′) ,T) 7→ (P.(pk′(c), N) ,T)

e) (P.(p0(c′), N).(Ik, Ns,s′) ,T) 7→ (P.(p0(c), N) ,T.(s, k))

f) (P.(m,N) ,T) 7→ (P.(m′, N) ,T)

Fig. 6: Rules of context-semantics

t1
q1

t2
q2

t3
q3

N2
N3

Nk
p0|_ p1|_ pk|_

Fig. 7

depends on whether p is a Ok′ (rule d) or a Ik (rule e). In the
first case, we must go to the k′-th auxiliary port of c′ and it
is local, in the second we have to go back to the cell c.

If p is a merging port, we cross the merging port (rule f).
As an example, the following 7→-path in the net N of Fig-

ure 1, goes from the principal port of E to the δ cell which will
form an active pair with E. Notice that this δ cell does not exist
yet (it will be created by the ζ/δ reduction): ([(b2, N)], []) 7→
([(a0, N)], [(ζ, 2)]) 7→ ([(a0, N); (I2, Rζ,δ)], []).

As a more involved example, we will study in the net N ,
the path between the two ε cells created during the δ/ε step
of reduction (first step of Figure 4).

([(e0, N); (r1, Rδ,ε)], []) 7→ ([(b2, N)], [(δ, 1)])

7→ ([(a0, N)], [(δ, 1); (ζ, 2)]) 7→ ([(a0, N); (d2, Rζ,δ)], [(δ, 1)])

7→ ([(a0, N); (z21 , Rζ,δ)], []) 7→ ([(a0, N); (O1, Rζ,δ)], [(ζ, 2)])

7→ ([(a1 = a2, N)], [(ζ, 2)]) 7→ ([(b0, N)], [(ζ, 2); (δ, 2)])

7→ ([(b0, N); (z2, Rδ,ζ)], [(ζ, 2)])

7→ ([(b0, N); (z2, Rδ,ζ); (I2 = O2, Rζ,ζ)], [])

7→ ([(b0, N); (d22, Rδ,ζ)], []) 7→ ([(b0, N); (d2, Rδ,ζ)], [(δ, 2)])

7→ ([(e0, N)], [(δ, 2)]) 7→ ([(e0, N); (e2, N)], [])

We wrote that 7→ simulates the reduction of the net. We
will prove that the 7→-paths are stable by reduction. For-
mally, if N → N ′, we will define a projection Π from
the potential ports of N to potential ports of N ′ so that
(P, T) 7→∗ (Q,U)⇔ (Π(P), T) 7→∗ (Π(Q), U).

In this section, we suppose that N → N ′ by reducing the
active pair {c1, c2} labelled by s1, s2. We set (R1, φ1) =
L(s2, s1) and (R2, φ2) = L(s1, s2). So N = N01φ2

Rs1,s2

and N ′ = N01ψ◦φ2
R2. We define a mapping Π from PotN

to PotN
′

which depends on the left-most port p:
• If p ∈ PN0 , we set Π([(p,N)]@P) = [(p,N ′)]@P .
• If p = p0(ci) for i ∈ {1, 2}. We set:

Π([(p0(ci), N); (r,Ri)]@P) = [(r,N ′)]@P

• Otherwise, Π is undefined.
Lemma 1 shows that the paths are preserved along reduc-

tion. It requires the potentials P and Q to be in the domain of
the projection, this condition is the counterpart of the “long
enough” condition on paths in GoI settings [5].

Lemma 1. If T,U ∈ Tra, P,Q ∈ PotN , Π(P) = P ′ and
Π(Q) = Q′ then (P, T) 7→∗ (Q,U)⇒ (P ′, T) 7→∗ (Q′, U)

If T,U ∈ Tra, P ′, Q′ ∈ PotN ′
and (P ′, T) 7→+ (Q′, U)

then there exists P,Q such that Π(P) = P ′, Π(Q) = Q′ and
(P, T) 7→+ (Q,U)

In particular, the successive projections of free ports of a
net will always be defined along a reduction sequence. So a
path between two free ports of a net will always be stable
along reduction, as stated by Corollary 1.

Corollary 1. If M →∗ N , p, q ∈ PMf and T,U ∈ Tra, then

([(p,M)], T) 7→∗ ([(q,M)], U)⇔ ([(p,N)], T) 7→∗ ([(q,N)], U)

Let Π1, Π2, Π3 and Π4 be the projections corre-
sponding to the reduction steps of Figures 1 and 4. We
have Π1([(e0, N); (r1, Rδ,ε)]) = [(e0, N1); (r1, Rδ,ε)], then
Π2([(e0, N1); (r1, Rδ,ε)]) = [(h1, N2)], next Π3([(h1, N2)]) =
[(i2, N3)] and Π4([(i2, N3)]) is not defined.

We can observe the reductions of the path of N
([(e0, N); (r1, Rδ,ε)], []) 7→13 ([(e0, N); (e2, N)], []) which be-
comes ([(e0, N1); (r1, Rδ,ε)], []) 7→2 ([(d2, N1)], [(δ, 1)]) 7→4

([(a′2, N1)], [(ζ, 2)]) 7→5 ([(e0, N); (e2, N)], []) in N1, then
([(h1, N2)], []) 7→3 ([(i2, N2)], []) in N2 and finally
([(i2, N3)], []) 7→0 ([(i2, N3)], []) in N3.

IV. CONTEXT SEMANTICS FOR COMPLEXITY BOUNDS

In this section, we define canonical cells, which are the
potential ports which correspond to cells that will really appear
during reduction. Then we use the canonical cells to define a
weight WN ∈ N ∪ {∞} for any net N such that, if M → N ,
then WM ≥WN+1. It follows that the length of any reduction

5

sequence from M is bounded by WM . Notice that it is not
true that WM > WN because if WM =∞, then WN =∞.

The approach is inspired by Dal Lago’s context semantics
for linear logic [3]. First, Dal Lago’s weight allowed to show
that every proof-net of some linear logic subsystems verified
complexity properties (e.g. every proof-net of LLL reduce in
polynomial time w.r.t the size of the argument, whatever the
reduction strategy). These bounds were previously known, but
Dal Lago’s proofs were much shorter. Then, his tool was used
to prove strong bounds which were previously unknown [15],
[2]. We hope that our tool will lead to similar results.

We want to capture the “cells which will appear during
reductions beginning by N”. Such a cell is either a cell of N ,
or appears during the reduction of two cells c1 and c2 such
that: c1 and c2 both appear during reductions beginning by
N , and {c1, c2} will form an active pair. This is the intuition
behind the following definition of canonical cells.

Definition 5. We define the set CanN of canonical cells of
N by induction:
• For every cell c of N , [(p0(c), N)] is a canonical cell
• If P1.(p0(c1), N1) ∈ CanN , (P1.(p0(c1), N1), []) 7→

(P2.(p0(c2), N2), []), lN (c1) = s1, lN (c2) = s2 and
L(s1, s2) is defined. Then for every cell c of Ns2,s1 ,
P1.(p0(c1), N1).(p0(c), Ns2,s1) ∈ CanN .

Lemma 2. Let us suppose that N →L N ′ by reducing the
active pair {c1, c2} and Π is the associated projection.

If P ∈ CanN , then either Π(P) is defined and Π(P) ∈
CanN

′
or P corresponds to one of the ports of the active

pair: P ∈ {[(p0(c1), N)], [(p0(c2), N)]}.
If Π(P) exists and is in CanN

′
, then P ∈ CanN .

As an example, let us consider the net N of Figure 1. We
can show that C1 = [(e0, N); (e1, Rδ,ε)] is a canonical cell.
Indeed, b0 is a principal port of N so [(b0, N)] is a canonical
cell. We know that ([(b0, N)], []) 7→0 ([(a0, N)], []) and
L(ζ, δ) is defined so [(b0, N); (d2, Nδ,ζ)] is a canonical cell.
Finally, ([(b0, N); (d2, Nδ,ζ)], []) 7→1 ([(e0, N)], []) and L(δ, ε)
is defined so [(b0, N); (d2, Nδ,ζ); (e1, Rε,δ)] is canonical.

Similarly, C2 = [(a0, N); (d2, Nζ,δ); (e1, Nε,δ)] and C3 =
[(e0, N); (e1, Nδ,ε)] are canonical. Let Π1, Π2, be the projec-
tions corresponding to N → N1 and N1 → N2 (Figures 1
and 4). We can observe that Π2 ◦ Π1(C1) = Π2 ◦ Π1(C2) =
Π2 ◦ Π1(C3) so, intuitively, there are three canonical cells
corresponding to the same future cell.

The following theorem corresponds to the main result of [3].
The intuition behind it is that each reduction step erases two
canonical potentials: the ones corresponding to the active pair.

Theorem 1. For every interaction-net N , the length of any
interaction sequence beginning by N is bounded by :

TN =
∑
P∈CN

1

2|P |

V. CONCLUSION

We build, for interaction nets, a tool similar to the linear
logic context semantics. Interaction nets being quite general,
this tool could help to prove strong bounds for various systems.

In [15], we defined abstract properties based on Dal Lago’s
context semantics, and proved that if all the proof-nets of
a linear logic subsystem verify the properties, the system is
polynomially sound. Such criteria could be especially useful
in interaction nets. For example, we may think that LLL (sub-
system of linear logic), DLAL (λ-calcul type system based
on LLL) and LPL (type system for λ-calculus extended with
pattern matching based on DLAL) satisfy a common property
which we could express in terms of context semantics. Thus,
we could prove the bounds for those three systems in a uniform
way. This may ease the transformation of other linear logic
subsystems (SLL, QBAL, L4) into programming languages.

However it seems we need further tools (corresponding
to the notion of copies, acyclicity of proof-nets and subtree
properties in [3]) to ease the use of Theorem 1 to prove bounds
for interaction nets system. This is left for future work.

We also used this CS to build a denotational semantics for
interaction net systems.

REFERENCES

[1] P. Baillot and M. Pedicini. Elementary complexity and geometry of
interaction. Fundamenta Informaticae, 45(1-2):1–31, 2001.

[2] Patrick Baillot, Paolo Coppola, and Ugo Dal Lago. Light logics and
optimal reduction: Completeness and complexity. Information and
Computation, 209(2):118–142, 2011.

[3] U. Dal Lago. Context semantics, linear logic, and computational
complexity. ACM Trans. Comput. Log., 10(4), 2009.

[4] V. Danos and L. Regnier. Proof-nets and the Hilbert space. London
Mathematical Society Lecture Note Series, pages 307–328, 1995.

[5] Marc De Falco. Géométrie de lâĂŹinteraction et réseaux différentiels.
These de doctorat, Université Aix-Marseille, 2, 2009.

[6] Maribel Fernández, Ian Mackie, Shinya Sato, and Matthew Walker.
Recursive functions with pattern matching in interaction nets. Electronic
Notes in Theoretical Computer Science, 253(4):55–71, 2009.

[7] J.Y. Girard. Proof-nets: the parallel syntax for proof-theory. Logic and
Algebra, 180:97–124, 1996.

[8] G. Gonthier, M. Abadi, and J.J. Lévy. The geometry of optimal
lambda reduction. In Proceedings of the 19th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 15–26.
ACM, 1992.

[9] Georges Gonthier, Martín Abadi, and J-J Lévy. Linear logic without
boxes. In Logic in Computer Science, 1992. LICS’92., Proceedings of
the Seventh Annual IEEE Symposium on, pages 223–234. IEEE, 1992.

[10] Y Lafont. Interaction nets. In Principles of programming languages,
17th ACM SIGPLAN-SIGACT symposium on, pages 95–108. ACM,
1989.

[11] U Dal Lago. The geometry of linear higher-order recursion. In Logic in
Computer Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE
Symposium on, pages 366–375. IEEE, 2005.

[12] Sylvain Lippi. Encoding left reduction in the lambda-calculus with inter-
action nets. Mathematical Structures in Computer Science, 12(6):797–
822, 2002.

[13] Ian Mackie and Jorge Sousa Pinto. Encoding linear logic with interaction
combinators. Information and Computation, 176(2):153–186, 2002.

[14] Damiano Mazza. Multiport interaction nets and concurrency. In
CONCUR 2005–Concurrency Theory, pages 21–35. Springer, 2005.

[15] M. Perrinel. On paths-based criteria for polynomial time complexity in
proof-nets (long version). http://arxiv.org/abs/1201.2956, 2013.

