
A Complexity Preserving Transformation from
Jinja Bytecode to Rewrite Systems

Michael Schaper

Institute of Computer Science, University of Innsbruck, Austria,
michael.schaper@uibk.ac.at

Abstract. We revisit known transformations from object-oriented byte-
code programs to rewrite systems from the viewpoint of runtime com-
plexity. Suitably generalising the constructions proposed in the literature,
we define an alternative representation of Jinja bytecode (JBC) execu-
tions as computation graphs from which we obtain a representation of
JBC executions as constrained rewrite systems. We show that the trans-
formation is complexity preserving. We restrict to non-recursive methods
and make use of a heap shape pre-analysis.

Introduction. In this work we study the automatic runtime complexity analysis
of Jinja bytecode, an object-oriented bytecode language, by means of a transfor-
mation to constrained term rewrite systems (cTRSs). Here, cTRSs are defined
as an extension of term rewrite systems that incorporates the theory of Pres-
burger arithmetic to express integer and Boolean operations naturally. TRSs
(and its derivatives) have been successfully applied before for proving termina-
tion of computer programs: In [1] a transformation from C like programs with
integer valued variables is proposed. This approach was extended in [2, 3] to
prove termination of Java programs including user-defined data structures. A
finite relation on abstract states is obtained by symbolically evaluating the byte-
code instructions on abstract states, and suitably merging them. This relation
is then transformed into rewrite rules, such that multiple rewrite steps mimic a
program step. In [4] it has been shown that TRSs are a reasonable cost model
for polytime computable functions and several methods have been developed in
recent years to compute upper bounds of TRSs automatically [5–7]. This moti-
vates to extend existing approaches to complexity analysis. Based on [2, 3] we
propose an alternative representation of abstract states. We relate our approach
to standard techniques from static program analysis, in particular abstract inter-
pretation [8], and show that the transformation to cTRS is complexity preserving.
This extended abstract is an excerpt from a report currently in progress [9].

Concrete Bytecode Domain. We analyse Jinja bytecode (JBC) programs. Jinja is
a Java like language that exhibits its core features, but is formally specified and
verified in Isabelle [10]. We expect the reader to be familiar with Java or a similar
object-oriented language. A Jinja value is either a Boolean, an (unbounded)
integer, the dummy value unit, the null reference null, or an address. Beside

values JBC has objects, which are instances of user-defined data types. Figure 1
illustrates a bytecode program that appends a list to an existing list.

00: Load 0
01: Store 2
02: Load 2
03: Getfield next List
04: Push null
05: CmpNeq
06: IfFalse 5
07: Load 2
08: Getfield next List
09: Store 2
10: Goto -08
11: Load 2
12: Load 1
13: Putfield next List
14: Push unit
15: Return

Fig. 1. List append.

Bytecode is executed on the Jinja virtual
machine (JVM). A (JVM) state is a pair consist-
ing of the heap and a list of frames. A heap is a
mapping from addresses to objects and a frame
consists of a register and an operand stack. A
heap and thus a state can be naturally repre-
sented as a graph, termed state graph, where
labels (denoted L(v)) are stack (register) in-
dices, non-address values or class identifiers and
edges are empty or field identifiers. Furthermore
a state graph has a root. The size of a state is
defined on a per-reference basis, which unrav-
els sharing. Let s be a state and S be its state
graph. Let u, v be nodes and u

∗
⇀S v be a sim-

ple path in S. The size of a stack (register) index u is |u| :=
∑
u
∗
⇀S v|LS(v)|,

where |l| is abs(l) if l ∈ Z, otherwise 1. Then, the size of s is the sum of all sizes
of stack and register indices in S, plus 1 for the root.

Let P be a program. Let JS denote the set of states of P , and let s, t ∈ JS.
The one-step relation of P is denoted s →P t, and an evaluation of s to t is
denoted s→∗P t. The complete lattice P(JS) := (P(JS),⊆,∪,∩,∅,JS) defines
the concrete computation domain. We define the collecting semantics on P(JS)
as the set extension of the one-step transition relation to sets.

Definition 1. The runtime of s →∗P t is the number of single-step executions
of the evaluation from s to t. Let S ⊆ JS. The runtime complexity of P is
rcjvm(n) := max{m | i→∗P t such that the runtime is m, i ∈ S and |i| 6 n}.

Abstract Bytecode Domain. We introduce abstract states as generalisations of
JVM states. Abstract states are similar to concrete states but heap and frames
may contain (sorted) variables: bool (int) represents an undefined Boolean (in-
teger) value, and cn represents either null or an instance of class cn′, where cn′

is a (not necessarily proper) subclass of cn. An abstract state represents a set of
JVM states. Furthermore we employ an implicit representation of aliasing and
sharing in the abstract heap, and incorporate annotations p 6= q ∈ iu to disallow
aliasing of addresses p and q in the represented states. The set of abstract states
is denoted AS 3 {>,⊥}. Elements of AS are usually indicated with \.

Definition 2. We define a preorder P on (abstract) non-address values, class
identifiers and class variables. We have v P w, if either (1) v = w; (2) v = unit;
(3) v = null and w is class variable cn; (4) v is a Boolean (integer) and w =
bool (int); (5) v = cn′, w a class variable cn and v is a subclass of w.

Let S\ and T \ be state graphs of states s\ and t\. We exploit P and the graph
representation to define a partial order v on abstract states. The relation s\ v t\
holds, if there exists a morphism m : VS\ → VT \ , such that (1) root(S\) =

2

root(T \), (2) for all stack (register) indices u ∈ S\, LS\(u) = LT \(m(u)), (3)
for all other u ∈ S\, LS\(u) Q LT \(m(u)), (4) for all u ∈ S\: if u

i
⇀S\v, then

m(u)
i

⇀T \m(v), and (5) for all u
`−→ v ∈ S\ and m(u)

`′−→ m(v) ∈ T \, ` = `′.
Furthermore, for all p 6= q ∈ s\, m(p) 6= m(q) ∈ t\. Note that stack and register
indices of S\ and T \ coincide for the same program location. For a suitable join
operation AS := (AS,v,

⊔
,
d
,⊥,>) is a complete lattice.

Definition 3. Let s = (heap, frms) ∈ JS. We define β : JS → AS. Suppose
dom(heap) = {p1, . . . , pn}. Define iu such that pi 6= pj ∈ iu for all different i, j.
Then β(s) = (heap, frms, iu). Let α : P(JS) → AS and γ : AS → P(JS)
be: α(S) :=

⊔
{β(s) | s ∈ S} and γ(s\) := {s ∈ S | β(s) v s\}. Then

(P(JS), α, γ,AS) is a Galois connection [8, 11].

In order to exploit the abstract domain, we propose computation graphs as
finite representations of all relevant states in AS, abstracting JS. A compu-
tation graph is a finite control flow graph, in which nodes are abstract states,
obtained by dynamically expanding nodes via abstract computation and suitably
merging nodes representing equal program locations. An abstract computation
consists of finitely many refinement steps and an abstract evaluation step. An
evaluation step mimics the semantics of the JVM instructions closely. In case of
an (abstract) integer and Boolean operation we label the edge with a constraint
that represents the effect of the operation. Refinement steps are performed when
no evaluation step can be performed. This is the case, if the instruction is either
(1) a conditional jump and the top value of the stack is a Boolean variable; (2) a
field access, field update, or a method invocation and the address is bound to a
class variable; (3) a field update, and the address may-alias with another address
in the heap. For (1), we consider states, where the variable is substituted with
Boolean values. For (2), we consider states, where the variable is substituted with
null and instances of all subclasses. For (3), we consider states, where we set the
addresses equal and unequal. Figure 2 illustrates the (incomplete) computation
graph of append, obtained under the assumption that all variables are acyclic,
do not alias and do not share at the beginning. We refine states by sharing and
acyclicity facts [12, 13]. Here ε denotes the empty stack; S is obtained from a join
operation; C depicts a refinement; annotations are left out. Note that due to (3)
all side-effects in the visible part of the heap are accounted. For correctness, we
require that the abstract semantics safely approximates the concrete semantics,
ie., γ(f \(s\)) ⊇ f∗(γ(s\)). We obtain following result:

Theorem 4. Let i, t ∈ JS. Suppose i →∗P t, where the runtime is m. Let G
denote the computation graph of P obtained from some initial state i\ such that
i ∈ γ(i\). Then there exists an abstraction t\ of t and m′ such that i\

m′

⇀Gt
\ holds,

for m 6 m′ 6 K ·m. Here constant K ∈ N only depends on G.

Abstract Term Domain. We present the transformation from computation graphs
to constrained term rewrite systems (cTRS). Our definition of cTRSs is a special
case of the logical term rewrite systems introduced in [14]. We are only interested

3

00 ε | this = o1, l1 = o2, l2 = unit
o1 = List(List.next = o3)

A o2 = list, o3 = list

02 ε | this = o1, l1 = o2, l2 = o1
o1 = List(List.next = o3)

B o2 = list, o3 = list

02 ε | this = o1, l1 = o2, l2 = o4
o1 = List(List.next = o3)
o2 = list, o3 = list, o5 = list

S o4 = List(List.next = o5)

02 ε | this = o1, l1 = o2, l2 = o5
o1 = List(List.next = o3)
o2 = list, o3 = list, o6 = list

D o5 = List(List.next = o6)

05 o5, null | this = o1, l1 = o2, l2 = o4
o1 = List(List.next = o3)
o2 = list, o3 = list, o5 = list

C o4 = List(List.next = o5)

05 o5, null | this = o1, l1 = o2, l2 = o4
o1 = List(List.next = o3)
o2 = list, o3 = list, o6 = list
o4 = List(List.next = o5)

C′ o5 = List(List.next = o6)

05 null, null | this = o1, l1 = o2, l2 = o4
o1 = List(List.next = o3)
o2 = list, o3 = list

C′′ o4 = List(List.next = null)

− l1, l2 | this = o1, l1 = o2, l2 = o4
o1 = List(List.next = o3)
o2 = list, o3 = list

E o4 = List(List.next) = o2

w

w

Fig. 2. The (incomplete) computation graph of append.

in cTRS over the theory T of Presburger arithmetic (PA). We have T ` C, if
all ground instances of constraint C are valid in PA. On the other hand, if there
exists a substitution σ, such that T ` Cσ, then C is satisfiable. Let C denote a
formula over theory symbols and (sorted) variables. We define the rewrite rela-
tion→R as follows. For terms s and t, s→R t holds, if there exists a context D,
a substitution σ and a constrained rule l→ r JCK∈ R such that s =T D[lσ] and
t = D[rσ] with T ` Cσ. Here =T denotes unification modulo T . A cTRS R is
called terminating, if the relation →R is well-founded. For a terminating cTRS
R, we define its runtime complexity, denoted as rctrs. We adapt the runtime
complexity with respect to a standard TRS suitable for cTRS R. The size of a
term t, denoted as ‖t‖ is defined as follows: (1) 1, if t is a variable; (2) abs(t), if
t is an integer; (3) 1 +

∑n
i=1‖ti‖ if t = f(t1, . . . , tn) and f is not an integer. The

derivation height of a term t (denoted dh(t)) with respect to R is defined as the
maximal length of a derivation starting in t.

Definition 5. We define the runtime complexity (wrt. R) as follows: rctrs(n) :=
max{dh(t) | t is basic and ‖t‖ 6 n}, where t = f(t1, . . . , tk) is basic if f is de-
fined, and terms ti are only built over constructor, theory symbols, and variables.

To represent program states as terms over F we proceed as follows: We collect
the values bound to stack and register indices in a list (denoted ts(s)). A value v is
(1) v, if v is a non-address value; (2) cn′, if the value bound to v is possible cyclic,
and cn′ is a fresh class variable; (3) cn, if v is a class variable cn; (4) cn(fields),
ie., the term representation of an object cn, if v is bound to an acyclic instance.
Let G be a finite computation graph. For any state s\ in G we introduce a new
function symbol fs\ . Let s\, t\ be states in G: For each edge s\

`−→ t\ ∈ G we con-
struct a rule (1) fs\(ts(s

\))→ ft\(ts(s
\)), if s\ v t\; (2) fs\(ts(t

\))→ ft\(ts(t
\)), if

t\ is a state refinement of s\; (3) fs\(ts(s
\))→ ft\(ts(t

\)) Jtval(C)K, if the edge is
labelled by C; (4) fs\(ts(s

\))→ ft\(ts
∗(t\)); s\ corresponds to a field update on ad-

dress p, heap(q) is variable cn, and q may-reach p; (5) fs\(ts(s))→ ft(ts(t)), oth-

4

erwise. Here ts∗(t\) is ts(t\) but q is a fresh class variable to account for the side-
effects.

fA(L(l3), l2, null)→ fB(L(l3), l2, L(l3))

fB(L(l3), l2, L(l3))→ fS(L(l3), l2, L(l3))

fS(L(l3), l2, L(l5))→ fC(l5, null, L(l3), l2, L(l5))

fC(L(l6), null, L(l3), l2, L(L(l6)))→ fC′ (L(l6), null, L(l3), l2, L(L(l6)))

fC(null, null, L(l3), l2, L(null))→ fC′′ (null, null, L(l3), l2, L(null))

fC′ (L(l6), null, L(l3), l2, L(L(l6)))→ fD(L(l3), l2, L(l6))

fD(L(l3), l2, L(l6))→ fS(L(l3), l2, L(l6))

fC′′ (null, null, L(l3), l2, L(l5))→ fE(L(l7), l2, L(l2))

Fig. 3. The cTRS of append.

Figure 3 illustrates the
cTRS obtained from the
computation graph of
append. We write L (l)
for a list symbol (vari-
able). Note the fresh-
variable l7 in fE , due
to (non-observed) side-
effect of the field up-
date.

Theorem 6. Let s, t ∈ JS. Then ‖ts(β(s))‖ ∈ O(|s|). Suppose s→∗P t, where s
is reachable in P from some initial state i. Set s′ = β(s), t′ = β(t). Then there
exists s\, t\ ∈ AS and a derivation fs\(ts(s

′)) →+
R ft\(ts(t

′)) such that s ∈ γ(s\)
and t ∈ γ(t\). Furthermore for all n: rcjvm ∈ O(rctrs(n)).

References

1. Falke, S., Kapur, D.: A Term Rewriting Approach to the Automated Termination
Analysis of Imperative Programs. In: Proc. 22nd CADE. Volume 5663 of LNCS.

2. Otto, C., Brockschmidt, M., v. Essen, C., Giesl, J.: Automated Termination Anal-
ysis of Java Bytecode by Term Rewriting. In: Proc. 21th RTA. (2010) 259–276

3. Brockschmidt, M., Otto, C., von Essen, C., Giesl, J.: Termination Graphs for Java
Bytecode. In: Verification, Induction, Termination Analysis. LNCS (2010)

4. Avanzini, M., Moser, G.: Closing the Gap Between Runtime Complexity and
Polytime Computability. In: Proc. 21th RTA. LIPICS (2010)

5. Noschinski, L., Emmes, F., Giesl, J.: A Dependency Pair Framework for Innermost
Complexity Analysis of Term Rewrite Systems. In: Proc. 23rd CADE. LNCS (2011)

6. Hirokawa, N., Moser, G.: Automated Complexity Analysis Based on the Depen-
dency Pair Method. In: Proc. 4th IJCAR. Volume 5195 of LNCS. (2008) 364–380

7. Avanzini, M., Moser, G.: A Combination Framework for Complexity. In: Proc.
24th RTA. LIPICS (2013)

8. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Proc.
of 4th POPL. (1977) 238–252

9. Moser, G., Schaper, M.: A complexity preserving transformation from jinja byte-
code to rewrite systems. CoRR abs/1204.1568

10. Klein, G., T-Nipkow: A Machine-Checked Model for a Java-like Language, Virtual
Machine, and Compiler. ACM Trans. Program. Lang. Syst. 28(4) (2006) 619–695

11. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer
Verlag (2005)

12. Secci, S., Spoto, F.: Pair-sharing analysis of object-oriented programs. In: Proc.
12th SAS. Volume 3672 of LNCS. (2005) 320–335

13. Rossignoli, S., Spoto, F.: Detecting Non-cyclicity by Abstract Compilation into
Boolean Functions. In: Proc. 7th VMCAI. Volume 3855 of LNCS. (2006) 95–110

14. Kop, C., Nishida, N.: Term Rewriting with Logical Constraints. In: Proc. 9th
FroCos. (2013) 343–358

5

